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Solution of Howells’ model of the scalar spectrum and 
comparison with experiment 

By R. J. HILL 
Wave Propagation Laboratory, Enviro.nmentd Research Laboratories, 

National Oceanic and Atmospherio Administration, Boulder, Colorado 80302 

(Received 11 September 1979 and in revised form 8 January 1979) 

Howells’ model of the scalar spectrum for isotropic turbulent flow is simplified udng a 
restriction to large Pbclet number and statistically stationary turbulence at high 
wavenumbers, and is generalized by introducing Batchelor’s constant EM a free para- 
meter. The resulting model is compared with data from the atmospheric surface layer, 
ocean, and liquid mercury. It is found that Howells’ model, which is applicable for 
arbitrary Prandtl number (Pr), does not compare well with data for large and inter- 
mediate Pr at wavenumbers higher than those in the inertial-convective range. The 
model implies that the inertial-diffusive range asymptotic form, k-, cannot appear 
even for Pr as small as that of mercury (Pr = 0.018). 

1. Introduction 

conserved scalar quantity advected by turbulent flow. This equation is 
Howells (1960) obtained an approximate equation for the spatial spectrum of a 

(1) 

where r(k) is the scalar spectrum, E(k)  is the energy spectrum, t is time, k is the spatial 
wavenumber, the wavenumber is denoted by n when it is a variable of integration, and 
D is the diffusivity of the scalar. Equation (1) was constructed in such a way as to 
recover the inertial-diffusive range form, r ( k )  ac k-Y, given by Batchelor, Howells I$ 
Townsend (1959) for small Prandtl numbers, as well as to recover the viscous-con- 
vective and viscous-diffusive range forms predicted by Batchelor (1959) for large 
Prandtl numbers. Consequently, Howells’ equation (1) is applicable to the high-wave- 
number range and for all Prandtl numbers. Hitherto, the solution of Howells’ equation 
has not been given in the literature, possibly because of the complexity of equation (1). 
The solutions of a modified form of Howells’ equation are studied herein and compued 
with observations. The modified Howells’ equation is equation (6), which is derived 
from (1)  by assuming that the P6clet number is large and that the turbulence is 
statistically stationary at high wavenumbers. Furthermore, Batchelor’s constant is 
made a free parameter to be chosen by comparison with observations. 

In order to observe an inertial-diffusive range, Clay (1973) has measured the spec- 
trum of temperature fluctuations in turbulent liquid mercury. This data was recently 
compared with a model scalar spectrum developed by Hill (1978). Even though the 
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Prandtl number is much less than unity (Pr N 0.018), the comparison of the data with 
that model spectrum indicated that no inertial-diffusive range can be observed in 
mercury because the transition to a viscous-diffusive range occurs at too low a wave- 
number. Furthermore, the comparison indicated that no inertial-convective range 
(where I'(k)ock+) was obtained in that data because the PBclet number was too 
small. 

However, none of the scalar spectral models developed by Hill (1 978) has a power 
law behaviour in the inertial-diffusive range. Consequently, it is of interest to solve 
Howells' equation in order to compare Clay's data with a model spectrum having the 
/I+ power law. Furthermore, the accuracy of Howelfs' model can then be tested 
against data for the spectrum of temperature fluctuations in air (Pr = 0-72) and 
temperature fluctuations in sea water (Pr = 9.2). 

2. The modified Howells' equation 
The first term in equation (1) expresses the rate of loss of spectral content at wave- 

numbers lower than k caused by transfer to the higher wavenumbers. In  (1) there is no 
scalar variance production; that is, the decay of the spectrum at low wavenumbers 
provides the input to the spectrum a t  high wavenumbers. The total rate of dissipation 
of scalar variance, x, is given by 

Then equation (1) may be rewritten as follows: 

where 

The parameters q and b are introduced in equations (3) and (4); Howells' equation (1) 
corresponds to b = 1 and q = 2. 

With a restriction to large P6clet numbers such that the variance-containing range 
and the diffusive dissipation range are well separated in wavenumber, then one may 
assume that scalar variance is provided at low wavenumbers at the rate x such that a 
statistically steady state exists at high wavenumbers. In this case, for k sufficiently 
large 

and 

When isotropy is assumed, x is also the diffusive dissipation rate given by 
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With these restrictions, equation ( 2 )  may be written as 

- x + G ( k )  r ( k ) + Z D N ( k )  Ckn2r(n)dn. 
J o  

Equation (5) is now differentiated with respect to wavenumber and (5) is used to 
eliminate the dissipation integral. This procedure transforms Howells' equation into 

Kolmogorov scaling is now used; the energy dissipation rate E and the kinematic 
viscosity v give the dissipation wavenumber k ,  = ( s /v3)* .  The following notation is 
used for the non-dimensional quantities: 

In  the inertial range of the energy spectrum 

B = ax+, (7) 

and in the inertial-convective range of the scalar spectrum 

P = g x d ,  

where a is the Kolmogorov constant and 
inertial range (z < 1) the following approximations apply: 

is the Oboukhov-Corrsin constant. In the 

G(x)  -N p.-1(#a)M, ( 9) 

(10) N ( x )  -N [ 1 + gb2Pr2ax-+]4, 

where Pr = v / D  is the Prandtl number. If, in addition, k < kc, where kc = (s/D3)* is the 
Corrsin wavenumber, then 

N ( z )  N (ga)*bPrxt.  (111 

G(2) v 214, N ( z )  N 1 .  (121, (13) 

In  the viscous range (x > 1) one has 

By requiring that (8) satisfy (6) a t  sufficiently low wavenumbers that (9) and (11)  
apply, the parameter b is related to a, /3 and q by 

b = 2[/3-l(2/3~)* - ~-l]/J3. (14) 

Equation (14) implies that, if b = 1, q = 2 and a = 1.5, then /3 = 0.5. However, the 
review of observed /3 values by Hill (1978) suggests that p lies between 0.67 and 0-83. 
Therefore, Howells' model with b = 1 and q = 2 is abandoned; equation (14) is used to 
determine b from specified values of p, a and q. 

Equation (6) is a first-order, linear, inhomogeneous differential equation. It may 
be solved by numerical integration. Alternatively, the Green's function method may 
be employed. In  either case, the appropriate boundary condition is to require 
that satisfy equation (8) at  a sufficiently low wavenumber, xo , which lies in the 
inertial-convective range. The Green's function method gives the solution of (6) as 

23-2 



708 R. J .  Hill 

where 

f(xl, x2) E exp [ - 2 ~ r - 1  x'aN(z') O(z')-1dx']. sz: 
The asymptotic forms of (15) are now discussed. The inertial-convective range 

consists of those wavenumbers such that x < 1 and x Q Pr*; that is k < k, and k 4 kc. 
In  the inertial-convective range equation (15) yields equation (8) as desired. In  the 
limit k B kd and P r  B 1, equation (15) gives 

where 

This result is Batchelor's theory for the viscous-convective and viscous-diffusive 
ranges. The parameter q is then identified as Batchelor's constant, and y is an effective 
least-principal rate-of-strain parameter. The inertial-diffusive range occurs if P r  Q 1 
and consists of the wavenumbers such that k $ kc and k < kd. In  the inertial-diffusive 
range equation (15) gives 

With b = 1, this is the result obtained by Batchelor et al. (1959). Howells' equation (1) 
was constructed in such a manner as to yield the asymptotic formulae in equations (8), 
( l6),  and (17). 

r(k) = +b2a~e~D-Sk*. (17) 

3. Comparison of the modified Howells' model with experiments 
Equation (6) is now solved by numerical integration, and the solutions are compared 

with the spectra of temperature fluctuations in air (Pr = 0.72) observed by Cham- 
pagne et ul. (1977), in water (Pr = 9.2) observed by Grant et al. (1968), and in mercury 
(Pr = 0-018) observed by Clay (1973). Comparison of other scalar spectral models 
with these data and a more complete discussion of the experiments is given by Hill 
(1978). 

Measurements yield the one-dimensional spectrum Y ( k )  which is related to the three- 
dimensional spectrum r(k) by 

The Kolmogorov scaled one-dimensional spectrum q ( x )  is given by 

T(x)  = k j v Y ( k ) / X .  

In the inertial-convective range (8) and (1  8) give 

T(x) = P I X - #  

with 
P1 = QB. 

Equations (31, (4), and (6) constitute a model-dependent model, in that, one must 
have a model energy spectrum E ( k )  to solve for r(k). To obtain an E ( k )  that closely 
resembles observations, a polynomial fit to the measured energy spectrum of Cham- 
pagne et al. (1977) was used. The polynomial fit was kindly provided by F. H. Cham- 
pagne. The polynomial was modified to satisfy equation (7) exactly for x < 0.14, while 
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causing only a slight change in the form of the dissipation range. The requirement 

that 1 = 2 xzE(x)dx was preserved in this transformation. The resulting energy 

spectrum to be used in equations (3) and (4) is shown in figure 1. The value of a is 1.62, 
which is slightly higher than most experimental values but is within experimental 
uncertainties. 

K 

3.1. Temperature Jluctuations in air 
The spectrum of temperature fluctuations measured in the atmospheric surface layer 
by Champagne et al. (1977) is now compared with the solution of (6). The temperature 
spectrum obtained by Champagne et al. (1977) has a ‘bump’ at high wavenumbers, as 
do the spectra measured by Williams & Paulson (1977) and by McConnell(l976). This 
bump is interpreted by Hill (1 978) as being a tendency to a viscous-convective range 
at wavenumbers lower than those wavenumbers at which the diffusion of heat has a 
strong effect. 

The one-dimensional spectrum is calculated from (6) and (1  8) and compared with the 
data obtained by Champagne et al. (1977) in figure 2. The calculations used Pr = 0.72, 
and the experimentally observed value of = 0.41. The cases q = 7.0 and 80 are 
shown. A three-dimensional spectrum is calculated from a polynomial fit to the 
data of Champagne et al. (1977) and is compared in figure 3 with the r ( k )  calculated 
from (6). The data and model spectra agree well for x < 0-02 where equations (8) 
and (19) apply. However, they do not agree well at higher wavenumbers. The bump in 
the model spectrum always lies at  higher wavenumbers than in the data. For q = 7.0 
the bump in the model spectrum has nearly the same height as in the three-dimensional 
‘data’ spectrum of figure 3 whereas the q = 7.0 model spectrum under-estimates 
the bump in the data on figure 2. On the other hand, the p = 80 model spectrum 
and the data in figure 2 have bumps with comparable heights. However, in figure 3 
the three-dimensional model spectrum for q = 80 has a larger bump than does the 
three-dimensional spectrum derived from the data. 
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FIauRE 2. Howells' model compared with the data of Champagne et al. (1977); solid curve for 
q = 7.0, dashed curve for q = 80; crosses indicate data points. 
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FIGURE 3. Howells' model compared with the three-dimensional temperature spectrum deduced 
from the data of Champagne et al. (1977); solid curve for q = 7.0, dashed curve for q = 80; crosses 
indicate data, points. 

Values of q deduced from experiment lie between about 4.5 and 7.0 (Hill 1978), 
whereas Batchelor (1959) first estimated that p was about 2. The value q = 80 used in 
figures 2 and 3 is much higher than acceptable values. 

The failure of equation (6) to reproduce the bump in the temperature spectrum in 
air is an intrinsic weakness of the model. The viscous-convective range in the model 
spectrum begins at too high a wavenumber. The effects of uniform straining on r ( k )  
calculated from (6) are strong only where E(k)  begins to decrease in its viscous dissipa- 
tion range for x 2 0.14. However, experiments show (Hill 1978) that the transition 
between the inertial-convective and viscous-convective ranges occurs a t  a much 
lower wavenumber, namely at x between about 0.06 and 0-04. Consequently Howells' 
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t 

FIUURE 4. Howells model compared with the data of Grant et al. (1968); solid curve for q = 8-0, 
dashed curve for q = 80; crosses are the data. Wavenumber k is in units cm-l, and 'P is in ("C)l cm. 

moue1 will not adequately represent the scalar spectrum for Pr 2 0.4 unless some 
function is introduced in place of E(k)  in equations (3) and (4) such that the new 
function decreases more rapidly than x-) for x 2 0.04. Alternatively, one could replace 
the limits of integration in equations (3) and (4) with k multiplied by some factor so 
that more emphasis is given to the energy spectrum a t  wavenumbers greater than k .  
Such modifications are not considered here. 

3.2. Temperature Jluctuations in the ocean 

Solutions of equation (6) are now compared with temperature spectra measured in a 
tidal channel by Grant et al. (1968), namely their run 2. For this run the values of the 
relevant parameters are: ,Bl = 0-31, E = 0.52 cm2 s-3, x = 4.2 x 10-30K2 s-l, and 
D = 1.44 x cm2 s-l, so Pr = 9.2, as is appropriate to their water temperature. In  
figure 4, the model one-dimensional spectra calculated using q = 8.0 and 80 are com- 
pared with data points which are read from the graph given by Grant et al. (1968). 

It is seen in figure 4 that the model curves make the transition from inertial-con- 
vective range to viscous-convective range at  a higher wavenumber than in the data. 
This is the same defect that causes the discrepancy between the model spectra and the 
air-temperature data shown in figures 2 and 3. It is concluded that, for Pr = 9.2 and 
any value of q, the model spectrum does not represent the data well for wavenumbers 
beyond the inertial-convective range. This problem is not peculiar to the use of the 
energy spectrum in figure 1 because solutions of (6) have this same feature when the 
energy spectrum given by Pao (1965) is used. 

3.3. Temperature Jluctuutiom in mercury 

If the Prandtl number is very small but the Pdclet number is very large then there 
exists an inertial-convective range followed by an inertial-diffusive range at  higher 
wavenumbers; at  yet higher wavenumbers the inertial-diffusive range is followed by a 
viscous-diffusive range. Howells' model places the transition from the inertial- 
diffusive to the viscous-diffusive range (for very small Prandtl number) a t  the same 
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TABLE 1. Parameters used to calculate the model spectrum o f  temperature fluctuations in 
mercury. All cmes were calculated using Pr = 0.018 and I1 = 0.43 so J!? = 0.717 

scaled wavenumber as the transition from inertial-convective to viscous-convective 
range (for very large Prandtl number), In  the preceding it was found that Howells' 
model placed the transition between inertial-convective and viscous-convective 
ranges at too high a wavenumber for moderate to large Prandtl numbers. However, 
there is no apriori reason to believe that this implies that the transition from inertial- 
diffusive to viscous-diffusive range is wrongly positioned by Howells' model for very 
small Prandtl number. Thus, despite the failure of Howells' model to accurately 
describe the transition between the inertial-convective and viscous-convective 
ranges, the model may still accurately represent the inertial-diffusive range for 
Pr 4 1, and the transition from the inertial-convective to the inertial-diffusive 
range, and the transition between the inertial-diffusive and viscous-diffusive ranges. 
For this reason it is of interest to compare Howells' model with the spectrum of tem- 
perature fluctuations in liquid mercury measured by Clay (1973). 

The model scalar spectrum is calculated for the eight cases listed in table 1. For 
each value of q and b the spectrum was obtained using b ( x )  = ax-# for all wave- 
numbers, even for x > 0.14, as well as using the energy spectrum given in figure 1. Thus 
the odd-numbered cases used #(x) = a x 4  whereas the even-numbered cases used 
b(z) from figure I .  

Figure 5 shows the functions z#F(z) and &P(x). The curves for x#F(z) differ so 
slightly that only case 5 is plotted. Of course, x*F(z) tends to the constant ,8 a t  small 
wavenumbers. The differences in P for the eight cases are pronounced only at  the 
higher wavenumbers and are evident in the curves for &P(x). 

In  the odd-numbered cases for which b(z) = ax-% was used, the function zAazF(z) is 
seen to tend to a constant at  the highest wavenumbers shown; this is the range where 
the asymptotic form in equation (17) applies. As b is decreased, equation (17) shows 
that &P(z) tends to a smaller constant at  high wavenumbers; consequently, in some 
cases in figure 5 the function &P(x) has a local maximum. 

In the even-numbered cases for which b ( x )  is taken from figure 1, the curves for 
&'P(x) show no tendency to the asymptotic form in equation (17); these curves in 
figure 5 decrease monotonically a t  the higher wavenumbers. This monotonic decrease 
is the beginning of the viscous-diffusive range. Therefore, Howells' model predicts 
that no inertial-diffusive range where equation (17) applies can be observed unless 
Pr is much smaller than 0.018. This agrees with the analysis by Hill (1978) even though 
Howells' model places the transition from the inertial-diffusive range to viscous- 
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FIUURE 5. The_ three-dimensional spectrum from Howells' model for Pr = 0.01 8 and the eight cases 
in table 1; &I?(,) asymptotes to p = 0-717 on the left, whereas the curves for &I?@) are on the 
right. From top to bottom along the right-hand side the solid curves are cases 7,5,3, and 1, whereas 
the dashed curves are cases 8, 6 , 4 ,  and 2. 

diffusive range at a much higher wavenumber than do the models developed by Hill 
(1978). 

The theory of the inertial-diffusive range as derived by Batchelor et at. (1959) yields 

r ( k ) Z  k - 4 ~ ( 4 ,  (20) 

which in turn gives r ( k )  cc k-%' in the inertial-diffusive range where E(k)  cc k-8. 
Batchelor et al. (1959) point out that one cannot extend equation (20) to the energy 
dissipation range because their mechanism for inertial-diffusive range spectral trans- 
fer is expected to become invalid where the energy spectrum decreases as rapidly as it 
does in the energy dissipation range. However, one can expect equation (20) to apply 
qualitatively to wavenumbers close to, but just beyond, the high-wavenumber end of 
the inertial range (e.g. for 0-14 < x 5 0-3 in figure 1) .  If this is so then equation (20) 
suggests that r(k) must fall more rapidly than k-5' as E(k)  enters its dissipation 
range; this is in agreement with the behaviour of the dashed curves in figure 5. 

The function x%'(x) and the dissipation spectrum x2Q(x) are shown in figures 6 and 
7, respectively. The differences between the eight cases in table 1 are so slight at  the 
lower wavenumbers that only case 5 is shown. The crosses and triangles in these and 
subsequent figures represent the temperature spectra in mercury measured by Clay 
(1973). The data giving the crosses and triangles were read from his figures 19 and 21 
respectively, and were re-normalized to satisfy the requirement that the area under 
the scaled dissipation curve in figure 7 is +Pr for Pr = 0.018, 

The data for the crosses and triangles were measured at  grid Reynolds numbers 
Re = 62000 and 270000 respectively. The corresponding grid PBclet numbers are 
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FIGURE 6. Comparison of Howells’ model spectrum (solid curve) with the data (crosses and 
triangles) obtained by Clay (1973). 
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with that from Clay’s 
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therefore Pe = Re x Pr = 1120 and 4860 respectively. Figure 6 shows that the model 
spectrum has its inertial-convective range at wavenumbers where the crosses show a 
variance-containing range. Thus the model suggests that the PBclet number of the 
run shown in figure 19 by Clay (1973) is too small to observe an inertial-convective 
range where equation (19) applies. This conclusion was also reached by Hill (1978) 
using the models given there. The Pe = 4860 run (triangles) attains greater values in 
figure 6 than does the Pe = 1120 run, which reinforces the conclusion that the Pe = 
1120 run (crosses) has no inertial-convective range. Perhaps the Pe = 4680 run also 
fails to have a true inertial-convective range because the ,8 values measured by Clay 
(1973) do not level off with increasing Reynolds number a t  the highest Reynolds 
numbers attained. The larger PBclet-number run (triangles) is in better agreement with 
the model spectrum (which corresponds to asymptotically large PBclet numbers) than 
is the smaller PBclet-number run (crosses). 

The fall-off of the Pe = 1120 data in the variance-containing range causes the crosses 
to fall below the model spectrum a t  low wavenumbers in figure 6. This fall-off also 
causes the peak of the measured dissipation spectrum, crosses in figure 7, to be lower 
than for the model. Since the area under the data and model spectra must be +Pr in 
figure 7, it follows that a lower peak in the measured dissipation spectrum requires the 
measured dissipation spectrum to exceed the model dissipation spectrum a t  higher 
wavenumbers. Thus, there is a PBclet-number effect such that measured values of the 
scaled spectrum ?(x),  a t  fixed scaled wavenumber x ,  must increase at the higher wave- 
numbers (tail of the dissipation spectrum) as the PBclet number decreases. This effect 
is illustrated in figure 7 by the fact that the Pr = 1120 data (crosses) lie above the 
Pe = 4860 data (triangles) a t  the highest wavenumbers. Unfortunately the Pe = 4860 
data does not extend to yet higher wavenumbers because of amplifier noise limita- 
tions. Despite these problems caused by the close proximity of the variance-con- 
taining range, these and subsequent figures show that the model spectrum agrees with 
the crosses for 0.02 < x < 0.05, and with the triangles for 0.01 < x < 0.06. 

Clay (1973) observed a k-3 power law over the limited range of wavenumbers 
0.025 < x < 0.039. A k-3 power law was predicted for the inertial-diffusive range by 
Gibson (1968). The function x 3 q ( x ) ,  obtained from the model, is compared with the 
data in figure 8. Of course, Howells' model is not expecbed to have a k-3power law in the 
inertial-diffusive range. Whether or not the observed k-3 power law is real, the model 
curve in figure 8 suggests that with some scatter in data one could see a k-S power law 
over a factor of 2 in wavenumber even if the power law did not exist. An entirely 
satisfactory observation of a k-3 power law would then require observing the power 
law over a wider range of wavenumbers. 

The function ~'3~319(x) is compared with the data in figure 9 for all eight cases in 
table 1. These curves are the one-dimensional analogue of the x Y F ( x )  curves in figure 
5. I n  figure 9 the solid curves, for which P ( x )  = ax-$ was used, tend to the asymptotic 
inertial-diffusive range form Q ( x )  a X-Y a t  high wavenumbers. However, the dashed 
curves, for which the B ( x )  in figure 1 was used, show a more rapid decrease a t  the 
highest wavenumbers because of the onset of the viscous-diffusive range. The data in 
figure 9 show a tendency to the asymptotic form q ( x )  cc x+ a t  the high wavenumbers. 
The last datum a t  the top of the figure shows the presence of noise a t  yet higher wave- 
numbers. As mentioned previously, the r ( k )  a k-Y power law and consequently the 
q a x-3' power law are not expected to be observed for x 2 0.14 because the energy 
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FIQURE 8. ThofmctionzS$(z) for both Howells’ model and Clay’s data. Cases 1 and 2 are the solid 
curve; cases 7 and 8 are the dashed curve; crosses and triangles ere data points. 

spectrum in figure 1 is in its dissipation range. The energy spectrum in Clay’s (1973) 
figure 19 ceases to obey E(k)  cc k-4 for x 2 0.10. Clay found the x* power law to hold 
over the wavenumber range 0.12 < x < 0.23. Because these wavenumbers exceed 
x = 0.10, this is apparently not the x-Y inertial-diffusive range predicted by Batchelor 
et aE. (1969). 
A striking feature in figure 9 is that the spectral level is much higher in the data than 

for the model curves at the high wavenumbers. One would need b 2: 1.5 for the model 
spectrum to match the data a t  these high wavenumbers. From equation (la), b cannot 
exceed 1.03 even as q+m for the values of /3 and a used here. To obtain b = 1.5 one 
must use much smaller values of /3 and a than those used here. As previously noted, 
there is a PBclet-number effect such that, if the PBclet number is so small that the 
variance-containing and dissipation ranges are in close proximity, then measured 
values of Q are larger at the highest scaled wavenumbers than for large-PBclet-number 
data. Is this PBclet-number effect sufficient to lower the crosses in figure 9 to the model 
curves in the limit thak the variance-containing and dissipative ranges are well 
separated? A rough estimate can be obtained by taking a B1 value from the peak of the 
crosses in figure 6 (i.e. pl R 0-25 so /3 N 0.42) and substituting it into equation (14). 
With a = 1.5 and q = 5-0 (the result is insensitive to the choice of q )  this yields b 1: 1.6, 
which is close to the previous estimate of b 2 1-5 necessary for Howells’ model to 
match the data at the high wavenumbers in figure 9. Thus, Howells’ model suggests 
that the PBclet-number effect is sufficient to lower the crosses in figure 9 to the model 
curves in the limit of large PBclet number. However, a definitive answer must await 
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FIGURE 9. Comparison of &Y(z) calculated from Howells' model for the eight cases in table 1 
with Clay's data (crosses and triangles). From top to bottom along the right edge the solid curves 
are cases 7,5,3, and 1, whereas the dashed curves are cases 8,6,4, and 2. 

large-P6clet-number experiments in mercury that can resolve wavenumbers as large 
as x M 0.2. Unfortunately, the Pe = 4860 data do not extend to sufficiently large 
wavenumbers because of amplifier noise. 

4. Strain-rate scalar-dissipation correlation 
The ' strain-rate scalar-dissipation correlation coefficient ' is defined by (Clay 1973) 

where 6 is the scalar fluctuation, u1 is streamwise velocity fluctuation, x1 is the co- 
ordinate in the streamwise direction and the over-bar denotes averaging. The fluctua- 
tion in the rate-of-strain tensor is denoted by eii, that is 

where i and j  have values 1 , 2 ,  or 3 for the three spatial directions. Statistical isotropy 
gives the relationships 

2eii eii = 1 5 ( a ~ , / a x , ) ~ ,  
- 
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Pr 

FIGURE 10. The  correlation C as a function of Pr. Model 2 is the dashed curve; model 4 is the solid 
curve. 0,  Clay's (1973) PT = 0.018, Pe = 1120 data; 0, Howells' (1960) model for PT = 0.018; 
0, the 9-run average of Williams & Paulson (1977); 0 ,  low-noise run, Williams & Paulson; 
A, Champagne et al. (1977). 

where repeated indices are summed. Thus C can also be expressed as 

Wyngaard (1971) shows that (21) can be recast in the form 

c = - 3 - i 0 p ~ - 2 / ~ ~ 4 i ? ( ~ ) d ~ ,  0 (22) 

where x and 
tuting P = - x d'!?/dx into (22) and integrating by parts gives 

are the Kolmogorov scaled wavenumber and scalar spectrum. Substi- 

Figure 10 gives Z as a function of Pr as calculated from models for the scalar 
spectrum as well as from data. The solid and dashed curves are from models 4 and 2 
of Hill (1978) using the parameters he obtains by fitting these models to the data of 
Champagne et al. (1977). The model 2 fit gives q = 4 whereas the model 4 fit gives q = 5. 
Both of these values of q exceed the bound q < 2 4 3  given by Gibson (1968). Gibson's 
bound assumes that Batchelor's effective least-principal rate-of-strain parameter 
y is bounded by the root mean square of the instantaneous local values of the least 
principal rate of strain; this assumption gives the simplest bound. As Gibson points 
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out, assuming a different criterion will give a different bound to q, e.g. if y is bounded 
by the mean of the local least-principal rate of strain then the bounds on q are relaxed. 
Thus it is possible for measured or model-fit values of q to exceed Gibson’s bound. 

Model 2, which gives the dashed curve, tends to Batchelor’s spectrum for large Pr, 

N 

namely 
r ( x )  = qx-l exp ( -qxZ/Pr),  

which is equivalent to (16 ) .  Equations (24 )  and (22) give Z = - 1.55/q. For very Iarge 
P r  model 4 tends to the Kraichnan-Mjolsness form 

r(x) = qx-l( 1 + cx) exp ( - cx), 

c = ( 6 q / P r ) ) ,  

which gives C = - 2-58/q. For very small P r  model 2 tends to the Corrsin-Pao spec- 

N 

trum, namely N r ( x )  = Px-Q exp [ - (3,8/2Pr) a]. (25) 

Equations (25) and (22) give I; = - 1-12Pr4,84, which implies that I ; + O  as P r - t  0. 
I n  the limit of very small Pr ,  Gibson’s k-3 inertial-diffusive range spectrum gives 
values of I; that are much less than the zero value from models 2 and 4; Clay (1973) 
obtains C 21 - 0.52 for Pr < from Gibson’s k-3 spectrum. For P r  = 0.018 Howells’ 
model gives a value C = - 0-24, which is insensitive to the value of the parameter q. 

Using (23) and Clay’s P e  = 1120 data gives C = - 0.46 for Pr = 0.018, in good 
agreement with Clay’s determination of C using the same method. This I; value is in 
better agreement with I; N -0.52 from Gibson’s k-3 spectrum than with the other 
models in figure 10. It is obvious from figures 7 or 8 that C = -0.24 from Howells’ 
model will be larger than the value C = - 0.46 from Clay’s Pe  = 1120 data because 
x4?(5) has its maximum a t  about x = 0.05 where the P e  = 1120 data exceed Howells’ 
model by almost a factor of two. The previously mentioned PBclet-number effect 
implies that the P e  = 1120 data exceed what would be obtained from a large-Pe 
measurement of 9 in the vicinity of x = 0.05. Thus I; = - 0.46 must be viewed as a 
lower bound for Pr = 0.018 and P e  9 1120. Unfortunately, no C value is available 
from Clay’s P e  = 4860 data because this run does not extend to large enough wave- 
numbers to resolve the x4$ curve. If I; > - 0.46 for P r  = 0.018 and Pe 4 1120 then 
Howells’ model and models 2 and 4 remain competitive with Gibson’s k-3 prediction 
for obtaining reasonable C values. A definitive selection between the various models 
for Pr < 1 must await measurements of *(x) for Pe 9 1120 that are accurate to high 
enough wavenumbers to resolve the x 4 9 ( x )  curve. 

Values of C obtained using (23) and the atmospheric temperature spectra (Pr = 0.72) 
of Williams & Paulson (1977) and Champagne et al. (1977) are shown on figure 10. 
The Champagne et al. data had no noise subtraction and had a signal-to-noise ratio of 
unity a t  x = 1; the upper limit of integration in (23) was truncated a t  x = 1-3; the 
resulting value C = - 0.62 is probably an underestimate because of the noise contri- 
butions. The Williams & Paulson data had a noise subtraction; the upper limit in (23) 
was set to 5 = 1.5 with Y ( x  = 1.5) = 0; the resulting values were C = - 0-59 for their 
9-run average spectrum and C = -0.48 for one of their low-noise spectra. The dis- 
crepancy between these I; values illustrates the sensitivity of the x 4 Y  spectrum to the 
presence of noise, noise subtraction procedures, and other instrumental problems. A 
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direct measurement of Z in air over the ocean was made by Clay (1973) with a wire 
anemometer and a wire thermometer separated by one-half the Kolmogorov micro- 
scale. Because of the salt-spray contamination effect discussed by Schmitt, Friehe & 
Gibson (1978), this and other over-ocean measurements might not be reliable. 

Clay (1973) used (23) to obtain C = - 0.29 from a water-tunnel (Pr = 7.0) measure- 
ment of Y.  However, his direct measurement of C. showed no tendency to a constant C 
value with decreasing probe separation; at  the smallest probe separation he obtained 
C = -0.32. Consequently, his results indicate that -0.32 is an upper bound for 
P r  = 7.0. 

It must be noted that the integral in (23) obtains its dominant contributions from 
well within the dissipation range where the behaviours of Howells’ model and models 
2 and 4 are speculative and where measurements of scalar spectra are difficult. The 
shape of the scalar spectrum in the dissipation range probably depends on Reynolds 
number because of the increasing small-scale intermittency with increasing Reynolds 
number. Thus, even if the PBclet number is large enough to attain good separation 
between the variance-containing and dissipation ranges of the scalar spectrum, the 
correlation C will probably vary with Reynolds number. 

5. Conclusion 
Howells’ equation (1)  is simplified for the case of large-P&let-number turbulence 

and generalized by making Batchelor’s constant, q, a parameter to be chosen by com- 
parison with observations. 

Howells’ model is compared with the data obtained by Champagne et al. (1977) 
(Pr = 0.72) and by Grant et al. (1968) (Pr = 9-2). This comparison shows that the 
model predicts a transition from the inertial-convective range to the viscous-convec- 
tive range which lies at  a wavenumber much higher than the experiments indicate. 
Consequently, Howells’ model does not compare favourably for large and intermediate 
Prandtl numbers at  wavenumbers greater than those wavenumbers in the inertial- 
convective range. 

Since the transitional wavenumber between the inertial-convective to viscous- 
convective range is too large, it is suggested, but not proven, that forPr < 1 the model 
places the transition from the inertial-diffusive range to the viscous-diffusive range 
a t  too high a wavenumber. Despite this large transitional wavenumber, the model 
predicts that for Pr = 0.018 the viscous-diffusive range begins a t  such a wavenumber 
that the k-Y inertial-diffusive power law does not appear. On the basis of a different 
model spectrum, Hill (1978) also predicted that the inertial-diffusive range is very 
limited in extent for Pr = 0.018 and that a convincing observation of the inertial- 
diffusive range would require Pr N 10-3. 

The temperature spectra for two Pkclet numbers (Pe = 1120, 4860) measured in 
mercury (Pr = 0.018) by Clay (1973) are compared with Howells’ model. The com- 
parison of the model with the Pe = 1120 run, as well as comparison of the Pe = 4860 
run with the Pe = 1120 run, suggests that the Pe = 1120 run is of too small a PBclet 
number for an inertial-convective range to appear; this same conclusion was reached 
by Hill (1978). It is not known whether the Pe = 4860 data is of large enough PBclet 
number for a true inertial-convective range to appear because the measured ,19 values 
do not level off with increasing PBclet number. Despite this problem, Howells’ model 
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and Clay’s data agree for the wavenumbers 0.02 < x < 0.05 for the Pe = 1120 data 
and x > 0.01 for the Pe = 4860 data. 

The Pe = 1120 spectrum exceeds the model for x > 0.05; agreement would require 
b = 1.5, which is not possible for the values of /3 and a used here. It is noted that, if the 
PBclet number is so small that  close proximity of variance-containing and dissipation 
ranges causes the dissipation spectrum to be reduced near its peak, then the tail of the 
scaled dissipation spectrum is increased relative to a very-large-PBclet-number 
measurement because the area under the one-dimensional scaled dissipation spectrum 
must always be QPr. Howells’ model is used to show that this PBclet-number effect is 
sufficient to explain why the Pe = 1120 data exceeds the model spectrum for x > 0.05. 

Clay (1973) reports observing two inertial-diffusive range power laws, k-3 and k-%‘. 
The shape of the function x 3 9 ( x )  near the maximum, as determined from the model, 
suggests that a convincing observation of a k-3 power law would require this power law 
to be observed over a much wider range of wavenumbers. The k-Y power law is 
observed at wa,venumbers within the viscous range of the energy spectrum; a t  these 
wavenumbers the Batchelor et al. (1959) prediction in equation (20) does not give a 
kLz’ power law. Consequently, the observed k-Y behaviour cannot be that predicted 
by Batchelor et al. It seems that further high-P&let-number experiments are needed 
to adequately resolve the nature of the inertial-diffusive range. 

The strain-rate scalar-dissipation correlation, Z, is calculated from Howells’ model 
for Pr = 0.018 and compared with Clay’s Pe = 1120 data. The model value X = - 0.24 
is greater than that from the data C = - 0-48, but the previously mentioned PBclet- 
number effect is shown to imply that X from a Pe 9 1120 measurement would be 
greater than X = - 0.48 from the Pe = 1120 data. Atmospheric surface layer tempera- 
ture spectra and models 2 and 4 of Hill (1 978) are also used to  estimate C. 

The author is indebted to  J. P. Clay and F. H. Champagne for their helpful dis- 
cussions. 
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